# John F. Nash's Work in Pure Mathematics

It’s fair to say that John F. Nash Jr. (1928-2015) didn’t earn much respect from pure mathematicians for his work in game theory. To them, his use of L.E.J. Brouwer (1881-1966) and Shizuo Kakutani (1911-2004)’s fixed-point theorems to show the existence of Nash equilibria in finite games with mixed strategies was and perhaps still is merely considered *“not surprising applications of well-known methods”* (Milnor, 1998). Indeed, even John von Neumann (1903-1957)—when confronted with Nash’s result—is to have replied *“That’s trivial, you know. That’s just a fixed point theorem”. *

Although—by far—recognized most widely for the work he did in game theory, Nash in the 1950s however also wrote groundbreaking papers on real algebraic geometry, topology and partial differential equations. Indeed, he won the Abel Prize in 2015 for his work on the latter, alongside Louis Nirenberg (1926-2020), considered one of the mos…

## Keep reading with a 7-day free trial

Subscribe to ** Privatdozent** to keep reading this post and get 7 days of free access to the full post archives.